ライフサイエンス研究とその周辺に関する個人のブログです

「シールド免疫」で新型コロナ拡大と経済破綻の両者を阻止?

新型コロナウイルス感染症(COVID-19)の拡大が世界を苦しめ続けています。感染拡大防止の公衆衛生戦略は、緩やかな抑止策であるミティゲーション(緩和)戦略と、社会的封じ込めなど強い拡大防止策を含むサプレッション(抑制)戦略とに大きく分けられます。本年3月にミティゲーションで対策を進めるとした英国が、数日でサプレッション策に方針転換したことからもわかる通り、前者は今回のCOVID-19制御に現時点では効果不十分と考えられています。一方で、強度のサプレッション策を長期間続けることは、社会的・経済的犠牲が多く、こちらはこちらで大問題を提起しているのです。

最近、日本のメディアでも、「免疫パスポート」という言葉が使われます。これにも関わるのですが、2020年5月7日に、ミティゲーションとサプレッションのそれぞれの問題点を軽減する新しい戦略を提案する研究がNature Medicine(ネイチャーメディシン)誌に報告されました。この研究では「シールド免疫(遮蔽免疫)」という考えを提示し、この方法がもつ感染抑止効果を数理モデルで検証しています。簡単にいうと、幅広く抗体検査をおこない、抗体陽性を示す感染後回復者を積極的に社会活動に配置することで、感染拡大と社会経済活動低下の両者を防ごうとする戦略です。筆頭著者は、米国ジョージア工科大学のJoshua S. Weitz先生で、責任著者も兼ねています。

Modeling shield immunity to reduce COVID-19 epidemic spread

Joshua S. Weitz, Stephen J. Beckett, Ashley R. Coenen, David Demory, Marian Dominguez-Mirazo, Jonathan Dushoff, Chung-Yin Leung, Guanlin Li, Andreea Măgălie, Sang Woo Park, Rogelio Rodriguez-Gonzalez, Shashwat Shivam & Conan Y. Zhao 

Nature Medicine (2020)

今後感染の可能性がある集団は未感染者(S)集団、現在ウイルスに感染していて未感染者(S)集団に対し感染性をもつものは感染者(I)集団、および感染後に免疫を獲得して回復したグループは回復者(R)集団と表記します(01)。その上で研究チームは、「抗体検査で明らかにした回復者(R)集団を、積極的に、未感染者(S)集団や感染者(I)集団と置き換えながら社会活動に戻すことにより、新規感染者を減らすことを目指す」戦略を提案し、「シールド免疫」と名付けています。回復者(R)集団は抗体があるので感染者(I)集団と接触しても大丈夫、との考えに基づいて、この回復者(R)集団に、未感染者(S)集団と感染者(I)集団を隔てるシールドとして機能してもらおうというのです。

数理モデルを用いた解析において、集団感染が拡大する様子は、1人の感染者が平均して何人に直接感染させるかという人数、すなわち基本再生産数(R0)によって変わります。R0値が大きいことは感染力が強く、小さいことは感染力が弱いことを意味します。本研究では、世界におけるCOVID-19パンデミックで収集解析されたデータを考慮の上で、大きめのR0(2.33)と小さめのR0(1.57)の2通りでシミュレーションをおこなっています。

研究チームは、人口1000万人の集団にCOVID-19が発生したと仮定します。そして、感染が発生し1000万人のうちの1万人が感染する状況となった時点で、1) 何も策を講じない、2) 中程度のシールド免疫策を開始する、3) 強力なシールド免疫策を開始する、という3つの設定を適用し、その後のシミュレーションをおこなっています。

「シールド免疫」については、補足説明(02)のようにシミュレーションしています。また実際には、補足に記した以外の条件設定も必要となります。この研究では、モデル期間における新規の出生やCOVID-19以外の理由での死亡は無視しています。また、感染者(I)の一部が入院し、その中で重症となる一定割合の集団が死亡することも設定しています。さらに、集団の年齢別人口分布も事前設定し、入院を要する割合や重症化割合が年代によって異なることも、実測データに近い条件で設定したとしています。また、本モデルでは回復者(R)はすべて免疫を獲得すること、また20歳から60歳までの回復者(R)が「接触置換」のために社会活動に戻るとする、などの設定も組み込まれているとしています。

先の人口1000万人のシミュレーションの場合、高い感染性の設定では、シールド免疫策をとらないと最終的に71000人の死者が出るとの結果になったとしています。これに対し、軽度のシールド免疫では死者58000人、さらに高度なシールド免疫では死者が何と20000人に減少するなど、著しい効果が予測される結果となりました。低い感染性の設定で見てみると、シールド免疫策をとらない場合は最終的に50000人の死者が出ることがわかりました。これに対し軽度のシールド免疫をおこなった場合には死者が34000人、強力なシールド免疫策をとると何とこちらでは8300人にまで減少するとの結果になったとしています。

研究チームは、このシミュレーションでは、結果に大きく影響する因子がいくつかあるとしています。ひとつ目は最初の年齢別人口分布が高齢者側に偏るほどシールド免疫の効果が高くなるということです。ふたつ目は無症候性患者の割合です。たとえば、感染者(I)集団の中で無症候者が少ないことは、多くの人が有症状になり重症になりやすいことを意味するので、死者も増えて回復者(R)が減ることと関係するのでしょう。もうひとつ、回復者(R)の免疫がどの程度の長期間継続するかということも、結果に影響するとしています。当たり前ですが、回復者(R)が社会活動に戻った後に再感染してしまうようではシールド免疫の効果は期待できないからです。本シミュレーションでは、一度抗体を獲得した回復者(R)の免疫が4ヶ月以上継続すると設定しています。

他にも研究チームは、ソーシャルディスタンシングで人との接触を10%低下させつつシールド免疫を組み合わせると、ソーシャルディスタンシングだけで接触を50% 低下させたと同等の死亡者低減効果があるとし、シールド免疫とソーシャルディスタンシングを併用する意義があることも示しています。

上記のデータから、研究チームはシールド免疫戦略が有効としています。ただ、シールド免疫戦略には課題があるともしています。ひとつは抗体検査の信頼性です。当然ですが、未感染者なのに抗体陽性と出てしまうことがあれば、人と接触する仕事に就くことで感染してしまう問題が生じます。その他にも、どのような人から優先して抗体検査をおこなうか、あるいは免疫の持続を確認するためどう抗体検査を繰り返すかなども課題としています。ただ、そのような課題も理解した上で、パンデミックのコントロールと経済破綻リスク軽減の両者をめざすシールド免疫は考慮に値するとしています。

自分が新型コロナウイルスに感染し、しかし幸いなことに無事に回復できた場合、多少の安心感をもって仕事にも行けるし、外出もできるし、精神的にはむしろ楽かもしれないな、と考えることもありますよね。メディアでも、回復者は「免疫パスポート」を持っているものとして、社会でたくさん活躍すれば良いとの主張も見聞きします。ただ、直感的にはそうだとしても、これを社会制度として運用するには、個人の感染履歴が他者に明らかになったり、回復者を半強制的に特定職務に配置する必要があったりなど、難しいことがたくさんあるでしょう。さらに言えば、新型コロナウイルスに対して持続的免疫獲得が生じるか自体が未確認である上、大規模な集団で抗体検査を施行可能なのかとか、もしも回復者として働く人に何かのインセンティブを与えるとすると、あえて感染を望む未感染者が現れるのではないかとか、色々な心配もでてきます。ただ、Joshua S. Weitz先生は、特効薬や有効なワクチン開発が未確定である現状において、ミティゲーション戦略を超えて感染拡大を抑えることができ、しかもサプレッション戦略のように経済への悪影響を引き起こさないこのような新しい解決策が有用だろうと述べています。

みなさんはシールド免疫、どう思いますか?

補足説明

01: 本記事では、これから感染の可能性がある集団は未感染者(S)集団と表記します。Sは、感染に感受性がある(Sensitive)という意味で使われます。この集団の検査結果パターンとしては、ウイルス(PCR)陰性かつ抗体陰性です。次に、ウイルスにある時点で感染していて、未感染者(S)集団に対する感染性(Infectious, I)をもつものは感染者(I)集団とします。もちろんPCRは陽性ですが、このウイルスに対する抗体獲得までの時期が厳密にわかってはいないので、この集団の抗体検査は陰性も陽性もあり得ます。最後に、感染後に免疫を獲得して回復した(Recovered: R)グループは回復者(R)集団とし、PCR陰性で抗体陽性となる集団です。

02:「シールド免疫」については、以下のようにシミュレーションしたとしています。もし抗体検査をしなければ、普通の人が社会活動を営む際に接触する相手が未感染者(S)、感染者(I)、回復者(R)のいずれかはわかりませんので、これらが混在する集団とランダムに接触することになります。たとえば、全集団の中に回復者(R)が1% とした場合、知らずにいれば回復者(R)との接触率はおよそ1% くらいとなるわけです。これに対してシールド免疫では、抗体検査で回復者(R)を確定し、この集団を優先的に社会活動に組み込んで、回復者(R)が他と接触する頻度を集団全体として何倍にも増やし、逆に未感染者(S)と感染者(I)間の接触を減らすとしています。本研究の数理モデルにおける実際の適用では、回復者(R)と他との接触を、ベースとなる1倍から(1+α)倍に増やす、という計算を導入しています。このαの値が0であればシールド免疫戦略をとらないのと同等になる一方、α値を増やせば増やすほど、厳しいシールド免疫になる設定です。

最新情報をチェックしよう!